Equidistribution of Translates of Curves on Homogeneous Spaces and Dirichlet’s Approximation
نویسنده
چکیده
Understanding the limiting distributions of translates of measures on submanifolds of homogeneous spaces of Lie groups lead to very interesting number theoretic and geometric applications. We explore this theme in various generalities, and in specific cases. Our main tools are Ratner’s theorems on unipotent flows, nondivergence theorems of Dani and Margulis, and dynamics of linear actions of semisimple groups. Mathematics Subject Classification (2010). Primary 22E40; Secondary 11J83.
منابع مشابه
Equidistribution of Expanding Translates of Curves and Dirichlet’s Theorem on Diophantine Approximation
We show that for almost all points on any analytic curve on R which is not contained in a proper affine subspace, the Dirichlet’s theorem on simultaneous approximation, as well as its dual result for simultaneous approximation of linear forms, cannot be improved. The result is obtained by proving asymptotic equidistribution of evolution of a curve on a strongly unstable leaf under certain parti...
متن کاملEquidistribution of Expanding Measures with Local Maximal Dimension and Diophantine Approximation
We consider improvements of Dirichlet’s Theorem on space of matrices Mm,n(R). It is shown that for a certain class of fractals K ⊂ [0, 1] ⊂ Mm,n(R) of local maximal dimension Dirichlet’s Theorem cannot be improved almost everywhere. This is shown using entropy and dynamics on homogeneous spaces of Lie groups.
متن کاملExpanding Translates of Curves and Dirichlet-minkowski Theorem on Linear Forms
We show that a multiplicative form of Dirichlet’s theorem on simultaneous Diophantine approximation as formulated by Minkowski, cannot be improved for almost all points on any analytic curve on R which is not contained in a proper affine subspace. Such an investigation was initiated by Davenport and Schmidt in the late sixties. The Diophantine problem is then settled via showing that certain se...
متن کاملInvariant Measures for Solvable Groups and Diophantine Approximation
We show that if L is a line in the plane containing a badly approximable vector, then almost every point in L does not admit an improvement in Dirichlet’s theorem. Our proof relies on a measure classification result for certain measures invariant under a non-abelian two dimensional group on the homogeneous space SL3(R)/ SL3(Z). Using the measure classification theorem, we reprove a result of Sh...
متن کاملJoinings of Higher Rank Diagonalizable Actions on Locally Homogeneous Spaces
We classify joinings between a fairly general class of higher rank diagonalizable actions on locally homogeneous spaces. In particular, we classify joinings of the action of a maximal R-split torus on G/Γ, with G a simple Lie group of R-rank ≥ 2 and Γ < G a lattice. We deduce from this a classification of measurable factors of such actions, as well as certain equidistribution properties.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010